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The objective of this study was to determine the prevalence of Campylobacter and Salmonella in broilers
and their distribution in the indoor and outdoor farm environment. Nine hundred samples (400 faecal;
300 indoor environment; 200 outdoor environment), were collected from 10 individual broiler houses
on 10 farms. Campylobacter jejuni prevalence was significantly higher (P = 0.003) in faeces (29.5%; 118/
400) than the environment (0.8%; 4/500) in contrast to Salmonella Typhimurium from faecal (8.8%; 35/
400) and environmental (8.4%; n = 42/500) sources (P = 0.217). S. Typhimurium predominantly exhibited
antimicrobial resistance (AR) to streptomycin (46%) and tetracycline (31.5%). C. jejuni isolates exhibited
AR only to tetracycline (55.5%). The PFGE profile revealed 100% similarity between S. Typhimurium iso-
lates from faecal and environmental sources. No relationship was detected between C. jejuni isolates. The
low prevalence of Campylobacter and Salmonella in the outdoor environment indicates that it may not be
a significant reservoir for transmission of these pathogens on broiler farms.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Campylobacter and Salmonella are among the leading causes of
foodborne illness in the United States, and frequently associated
with handling or consumption of raw poultry products (Scallan
et al., 2011; CDC, 2011). Salmonella and Campylobacter cause an
estimated one million and 800,000 cases, respectively, of foodborne
illnesses in the US each year (Scallan et al., 2011). Transmission of
both pathogens from poultry to humans is a serious public health
concern. Thus, there has been significant focus on preventing the
colonization and spread of Campylobacter and Salmonella in poultry
houses. Campylobacter jejuni is the most prevalent Campylobacter
species in poultry, with flock colonization rates typically ranging
from 40–90% (Evans and Sayers, 2000; Rasschaert et al., 2007).
Positive flocks often have close to 100% Campylobacter prevalence
as the pathogen quickly spreads throughout the flock (Evans and
Sayers, 2000). Campylobacter is also routinely isolated from retail
chicken breast, with a prevalence of 38.3% in 2010 (NARMS,
2012). Salmonella Kentucky, S. Enteritidis, and S. Typhimurium are
commonly reported serovars isolated from poultry (Liljebjelke
et al., 2005; van de Giessen et al., 2006; Foley et al., 2011). For
ll rights reserved.
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Salmonella, flock colonization rates can vary greatly, but typically
fall within 6–30% as reported previously (Liljebjelke et al., 2005;
van de Giessen et al., 2006; Gutierrez et al., 2009). In 2010, the prev-
alence of Salmonella in retail chicken breast was 13.0% (NARMS,
2012).

Antimicrobial susceptibility of Campylobacter and Salmonella in
poultry often varies depending on geographic region and local pro-
duction practices. According to the 2010 executive report from the
National Antimicrobial Resistance Monitoring System (NARMS),
Campylobacter isolated from chickens often exhibit antimicrobial
resistance (AR) to ciprofloxacin, nalidixic acid, and tetracycline
(NARMS, 2012). Salmonella isolated from chickens more often exhi-
bit resistance to sulfisoxazole (46%) and tetracycline (56%)
(NARMS, 2012). The issue of AR development in the poultry indus-
try has been well studied and the focus has been on preventing fo-
mite transmission of resistant bacterial pathogens from poultry
houses to the external environment (Bailey et al., 1996; Harbaugh
et al., 2006). While vertical transmission has been documented,
horizontal transmission is thought to be a main factor influencing
the presence of Campylobacter in broiler flocks (Ellis-Iversen et al.,
2011; Ridley et al., 2011). Accumulation of dust in a poultry house
is more common around ventilation fans, which aids in the move-
ment of dust from the inside to the outside environment (Davies,
2005). Both vertical transmission from the breeding hens and hor-
izontal transmission from previous flocks or the environment are
thought to be important in the spread of Salmonella spp. in and be-
tween flocks (Liljebjelke et al., 2005; Foley et al., 2011).
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While Campylobacter and Salmonella infections are often asymp-
tomatic in broilers, colonization of these pathogens in broilers pre-
sents a significant risk to human health through ingestion of
contaminated retail meat. Thus, improving our understanding of
the on-farm transmission dynamics of Campylobacter and Salmo-
nella will allow for implementation of better control measures to
reduce pathogen prevalence. The aim of this cross-sectional study
was to examine the prevalence of Campylobacter and Salmonella in
10 commercial enclosed broiler houses. The birds, as well as the in-
door and outdoor environments, were sampled to determine trans-
mission dynamics of the two pathogens in these flocks. An
important objective was to determine the distribution and possible
reservoirs of the two pathogens in the indoor and outdoor
environments.
2. Materials and methods

2.1. Sample collection from flock and environment

Faecal and environmental samples were collected from 10 com-
mercial broiler houses in North Carolina between October 2010
and March 2011. A single house was sampled at one of 10 farms
visited. The farms were operated by a single, large-scale broiler
production company in North Carolina with average flock sizes of
approximately 20,000 birds per house. Birds were raised on the
house floor with reused litter and had no access to the outdoors.
The farms used coccidiostats (salinomycin, narasin, nicarb) and
antibiotics (bacitracin methylene disalicylate, 3-nitro) for prophy-
laxis and treatment of birds. At each farm, 40 pooled fresh faecal
samples and 50 environmental samples were collected. Fresh fae-
cal samples (10 g) were collected using a clean, gloved hand di-
rectly from the house floor. The faecal samples were later
divided and processed separately for the isolation of Campylobacter
and Salmonella. Two sets of environmental samples (one set for
each pathogen) were collected; including 10 samples each of out-
door environmental samples (outside swab and grass) and indoor
environmental samples (feed, litter, and inside swab). Ten grams
of feed, litter and grass samples were collected aseptically into
sterile Whirl-Pak bags (Nasco, WI, USA). The inside and outside
environmental swab samples were collected by wiping a sterile,
moist swab 10 times per side along the interior or exterior sides
of the house. Four of each indoor and outdoor environmental sam-
ple were specifically collected from areas around or on the ventila-
tion fans. This was done to determine whether ventilation fans
were playing a role in transmission of pathogens between the in-
side and outside of the house. Samples were immediately trans-
ported on ice to the laboratory for processing.
2.2. Campylobacter isolation and identification

A loopful (approximately 1 g) of faecal material was streaked di-
rectly onto Campy-Cefex selective agar plates (Brucella Agar (BBL,
Becton Dickinson, USA) with 1% ferrous sulfate, 0.5% sodium bisul-
fite, 1% pyruvic acid). These samples were incubated under micro-
aerophilic conditions (CO2: 10%, O2: 5%, N2: 85%) at 42 �C for 48 h.
Presumptive colonies were then selected and streaked onto Muel-
ler Hinton (MH, Difco, Becton Dickinson, USA) agar plates and incu-
bated under microaerophilic conditions at 42 �C for 48 h to obtain a
pure culture. Presumptive cultures were biochemically confirmed
using catalase (3% H2O2) and oxidase (tetramethul-p-phenylenedi-
amine) tests (Difco, Becton Dickinson, USA). An initial enrichment
step was used to isolate Campylobacter from environmental sam-
ples. Ninety millilitter of Bolton Broth (Oxoid, UK) was added for
selective enrichment of feed, litter, and grass samples while
30 ml of Bolton Broth was added to each inside and outside swab.
These samples where then mixed thoroughly and incubated under
microaerophilic conditions at 42 �C for 48 h. Next, one loopful
(approximately 10 ll) of the Bolton Broth suspension was streaked
onto Campy-Cefex agar and processed in the same manner as fae-
cal samples. The DNeasy Blood and Tissue Kit (Qiagen, Germany)
was used to purify the DNA following manufacturer’s protocol. A
multiplex PCR was used to speciate Campylobacter as previously
described (Cloak and Fratamico, 2002). Confirmed isolates were
then stored in Brucella Broth containing 20% glycerol at �80 �C
for future analysis.

2.3. Salmonella isolation and identification

Ninety millilitter of buffered peptone water (BPW, Difco, Becton
Dickinson, USA) was added to specimen cups containing 10 g of
either fresh faecal or environment samples (grass, litter, feed).
Thirty millilitter of BPW was added to the bags containing inside
and outside swabs, mixed thoroughly, and incubated at 37 �C for
24 h. Next, 100 ll of suspension was transferred to 9.9 ml of Rap-
paport–Vassiliadis (RV, Difco, Becton Dickinson, USA) broth and
incubated at 42 �C for 24 h. After incubation, a loopful of RV broth
suspension was streaked onto XLT4 selective agar plates (Remel,
Thermo Fisher Scientific, USA) and incubated at 37 �C for 24 h. A
single black colony per plate was picked and confirmed by bio-
chemical tests, including triple sugar iron (Remel, Thermo Fisher
Scientific, USA) and urea agar slants (Oxoid, UK). The isolates were
stored on lactose broth agar slants (Difco, Becton Dickinson, USA)
at room temperature and in Brucella Broth containing 20% glycerol
at�80 �C for future analysis. The DNeasy Blood and Tissue Kit (Qia-
gen, Germany) was used following manufacturer’s protocol to pur-
ify the DNA. The purified DNA was used as the template in two
multiplex PCRs to serotype Salmonella isolates as described previ-
ously (Alvarez et al., 2004).

2.4. Antimicrobial susceptibility testing

Campylobacter and Salmonella isolates were tested for antimi-
crobial susceptibility by broth micro dilution method using the
Sensititre-semiautomated system (Trek Diagnostic System, Inc.,
OH, USA). The minimum inhibitory concentration (MIC) was deter-
mined using the CVM1AGNF plate for Salmonella and the CAMPY
(Trek Diagnostic System, Inc., Cleveland, OH) plate for Campylobac-
ter isolates against 15 and nine antimicrobials, respectively. The
CVM1AGNF plate includes amikacin (AMI), ampicillin (AMP),
amoxicillin/clavulanic acid (AUG), ceftriaxone (AXO), chloram-
phenicol (CHL), ciprofloxacin (CIP), sulfisoxazole (FIS), cefoxitin
(FOX), gentamicin (GEN), kanamycin (KAN), nalidixic acid (NAL),
streptomycin (STR), trimethoprim/sulfamethoxazole (SXT), tetra-
cycline (TET), and ceftiofur (TIO). The CAMPY plate includes azith-
romycin (AZI), ciprofloxacin (CIP), clindamycin (CLI), erythromycin
(ERY), florfenicol (FFN), gentamicin (GEN), nalidixic acid (NAL),
telithromycin (TEL) and tetracycline (TET). The strains Escherichia
coli ATCC25922 and C. jejuni ATCC33560 were used as quality con-
trols. The protocol and breakpoints were determined according to
Clinical Laboratory Standards Institute (CLSI) recommendations
(CLSI, 2010).

2.5. Characterization of antimicrobial resistance (AR) determinants

Antimicrobial resistant Salmonella isolates were screened for
the presence of class 1 Integron and corresponding resistance
genes based on their AR phenotypes. The primers used for detec-
tion of different AR genes were as follows: ESBL genes-blaTEM and
blaPSE (Carlson et al., 1999), blaCMY-2 (Zhao et al., 2001) genes
encoding tetracycline resistance tet(A), tet(B) and class I integrons
(Ng et al., 1999), aminoglycosides-aad A1/A2 and strA/B (Madsen
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et al., 2000), chloramphenicol-cml (Briggs and Fratamico, 1999),
kanamycin-aphAI (Frana et al., 2001), and sulfisoxazole-sul2
(Aarestrup et al., 2003). All resistant Campylobacter isolates were
tested for the presence of the tet(O) gene, using primers DMT1-F
and DMT2-R following the protocol described previously (Gibreel
et al., 2004).

2.6. Pulsed field gel electrophoresis (PFGE) analysis

Clonal relationships of Salmonella and Campylobacter were
determined by PFGE using the PulseNet protocol (Ribot et al.,
2001, 2006). Briefly, 400 ll of overnight culture cells were lysed
and intact genomic DNA was digested in agarose-embedded plugs
with XbaI and SmaI restriction enzymes for Salmonella and Cam-
pylobacter, respectively. The restriction fragments were separated
by electrophoresis in 0.5X TBE buffer, 1% ultrapure agarose (Sea-
kam Gold Agarose, Maine, USA) for 18 h at 14 �C in a pulsed field
gel electrophoresis system (CHEFF DR III, BioRad, USA) using
pulsed times of 2.2–63.8 s for Salmonella and 6.75–38.35 s for Cam-
pylobacter. The XbaI digested S. Braenderup H9812 were used as
the reference DNA marker. Gels were stained with ethidium bro-
mide, followed by washing with nanopure water and photo-
graphed under UV light.

2.7. Statistical analysis

Prevalence estimates from different samples were compared
using the Fisher’s exact two-tailed test using statistical software
(SigmaPlot, CA, USA). Significance was defined at P 6 0.05. Clonal
relationships among these isolates were analyzed using Bionumer-
ics version 6.1 (Applied Maths, USA). The banding patterns were
compared using the Dice coefficient and unweighted pair group
method with arithmetic mean (UPGMA) with 1.5% optimization
and position tolerance.
3. Results

3.1. Campylobacter and Salmonella prevalence

Nine hundred samples (faecal n = 400; environmental n = 500)
were collected from 10 commercial broiler houses and tested for
the presence of Campylobacter and Salmonella. One hundred and
twenty-two Campylobacter isolates were recovered from the sam-
ples. Campylobacter was isolated from 29.5% (n = 118) of faecal
samples, with 40% of houses testing positive. Campylobacter prev-
alence was significantly higher in faecal material (29.5%) than in
the combined indoor and outdoor environmental samples (0.8%;
n = 4; P = 0.003). Campylobacter was rarely isolated from the sur-
rounding farm environment. Only two houses tested positive for
the environmental samples including two inside swabs, a single
outside swab, and a single grass sample. All litter and feed samples
collected in the study tested negative for Campylobacter. It is
important to highlight that all environmental samples in three of
the four houses with positive faecal samples tested negative. Addi-
tionally, there was one house with a positive swab inside and swab
outside sample where all faecal samples were negative. Multiplex
PCR was used to determine speciation of the 122 Campylobacter
isolates. Three isolates were not culturable despite multiple at-
tempts. All 119 isolates were C. jejuni and were further character-
ized at phenotypic and genotypic levels.

Seventy-six Salmonella were isolated from the samples col-
lected. These included Salmonella isolated from 8.8% (n = 35) of fae-
cal samples, with 70% of houses testing positive. In contrast to
Campylobacter, Salmonella was isolated most frequently from litter
at 28%, followed by swab inside (7%), feed (3%), outside swab (2%),
and grass (1%). The environmental samples positive for Salmonella
originated from five houses, two of which had negative faecal sam-
ples. There was no significant difference in Salmonella prevalence
between faecal (8.8%) and the combined environmental samples
(8.4%; P = 0.217). All the Salmonella isolates were identified as sero-
type Salmonella Typhimurium. Overall, there was no significant dif-
ference between C. jejuni and S. Typhimurium prevalence in faecal
samples (P = 0.874). However, S. Typhimurium prevalence in the
combined environment was significantly higher than that of C.
jejuni (P < 0.001). Co-occurrence with both pathogens was detected
in faecal samples from three houses (30%), but no association was
detected between the prevalence of C. jejuni and S. Typhimurium
(P = 0.138).

3.2. Antimicrobial susceptibility testing

All the C. jejuni (n = 119) and S. Typhimurium isolates (n = 76)
were tested for antimicrobial susceptibility to a panel of antimicro-
bials by the broth micro dilution method. The C. jejuni isolates were
resistant only to tetracycline (55.5%; n = 66). Of the 76 S. Typhimu-
rium isolates tested, 28.9% (n = 22) were pansusceptible, while the
remainder showed wide spectrum AR. The highest frequency of AR
was exhibited to streptomycin (46%; n = 35) followed by tetracy-
cline (31.5%; n = 24), ampicillin, amoxicillin/clavulanic acid, ceftri-
axone, ceftiofur, cefoxitin and sulfisoxazole (25% each; n = 19),
kanamycin (13.1%; n = 10), and gentamicin (9.2%; n = 7). All iso-
lates were susceptible to amikacin, chloramphenicol, trimetho-
prim/sulfamethoxazole and quinolones. Multidrug resistant
(MDR; resistance to P3antimicrobials) S. Typhimurium was de-
tected from isolates from both faecal (17.1%; n = 6) and environ-
mental samples (48.8%; n = 20). The common MDR patterns
identified are listed in Table 1.

3.3. Molecular characterization of antimicrobial resistance
determinants

All the tetracycline resistant C. jejuni isolates (n = 119) were
found to carry the tet(O) gene. The S. Typhimurium isolates were
tested for 11 different AR genes encoding resistance to different
antimicrobials and the results are shown in Table 1. AR to ampicil-
lin was encoded by the blaTEM gene (52.6%; n = 10) while the iso-
lates resistant to b-lactams, including cephalosporins, carried the
blaCMY-2 gene (100%; n = 19). The streptomycin resistant isolates
carried either strA (74.2%; n = 26) or the aad A1 (20%; n = 7) gene.
AR to tetracycline was harbored by the tet(A) (62.5%; n = 15) and
tet(B) (37.5%; n = 9) genes. All isolates resistant to kanamycin and
sufisoxazole were encoded by aphAI and sul2 genes, respectively.
Six (23%; n = 6) MDR S. Typhimurium isolates tested positive for
the presence of a 1 kb class I Integron.

3.4. Pulsed field gel electrophoresis (PFGE)

C. jejuni (n = 119) and S. Typhimurium (n = 76) isolates were
typed by PFGE using SmaI and XbaI restriction enzymes, respec-
tively. Three C. jejuni isolates were not culturable despite multiple
attempts and were not included in PFGE analysis. The majority of
the C. jejuni isolates with 7–8 bands were clustered in four major
clusters (n = 117), except for two isolates with unique profiles
(Fig. 1). The C. jejuni dendrogram showed 100% genotypic similar-
ity among the isolates from faecal and environmental samples,
both from within houses and among different houses. The majority
of isolates belonged to cluster 2 (n = 70), containing isolates from
Houses 4, 9 and 10. Houses 4 and 10 contained a single genotype
(cluster 2), with the same genotype clustered into two different
PFGE profiles for House 9. Two distinct genotypes were detected
in House 1, split between clusters 1 (n = 24) and 4 (n = 12) with a



Table 1
Common MDR patterns identified among Salmonella isolates from poultry and the environment.

Faecal Environment

Antimicrobial resistance patternsa (n = 35) (n = 41) Resistance genes identified

FIS–GEN–STR 8.5 (3)b 0 sul2, aadA1
FIS–GEN–STR–TET 0 9.7 (4) sul2, aadA2, tet(A)
AMP–AUG–AXO–FOX–STR–TIO 5.7 (2) 12.1 (5) blaCMY-2, strA
AMP–AUG–AXO–FOX–FIS–TIO–TET 2.8 (1) 0 blaCMY-2, sul2, tet(A)
AMP–AUG–AXO–FOX–FIS–STR–TIO–TET 0 2.4 (1) blaCMY-2, sul2, strA/B, tet(B)
AMP–AUG–AXO–FOX–FIS–KAN–TIO–TET 0 24.3 (10) blaTEM, blaCMY-2, sul 2, aphA, tet(A)

a Antimicrobials tested: Ampicillin (AMP), Amoxicillin/Clavulanic acid (AUG), Ceftriaxone (AXO), Cefoxitin (FOX), Ceftiofur (TIO) Sulfisoxazole (FIS), Gentamicin (GEN),
Kanamycin (KAN), Streptomycin (STR), Tetracycline (TET).

b Percent (Number).
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single isolate showing a unique PFGE profile. An outdoor swab iso-
late from House 3 shared 100% genotypic similarity among faecal
isolates from House 1 (cluster 1) and an indoor swab had a unique
PFGE profile.

S. Typhimurium typing by PFGE produced on average 10–16
bands and isolates were grouped into nine clusters representing
71 isolates (Fig. 2). The remaining five Salmonella isolates had un-
ique profiles. S. Typhimurium PFGE cluster 1 (Fig. 2) showed 100%
genotypic similarity among faecal and indoor environmental iso-
lates including feed, litter and swab inside, originating from four
houses. Similarly, clusters 2, 3 and 6 consisted of isolates showing
100% genotypic similarity among faecal, indoor and outdoor envi-
ronment from not only within the same house but also with iso-
lates from different houses. All MDR isolates in cluster 3 were
indoor environmental samples from House 7 and 8 and exhibited
resistance to either seven (AMP–AUG–AXO–FOX–FIS–TIO–TET) or
eight (AMP–AUG–AXO–FOX–FIS–KAN–TIO–TET) antimicrobials
(Fig. 2). The majority of the pansusceptible isolates were grouped
in clusters 4, 5 and 6 with a single isolate each exhibiting resis-
tance to streptomycin in clusters 4 and 6. All the isolates that
showed resistance to only tetracycline (TET) were clustered to-
gether in a single group (cluster 9).

4. Discussion

C. jejuni was isolated from faecal samples in four of the 10
houses sampled. Within positive houses, prevalence was typically
very high in faecal samples. This was in agreement with previous
studies that have determined that once Campylobacter enters a
flock, it spreads quickly and colonizes the entire flock (Evans and
Sayers, 2000; Newell and Fearnley, 2003). S. Typhimurium was
comparatively isolated from more broiler houses, but at a lower
overall prevalence. The house prevalence detected in this study
was high relative to what has been reported in the literature (Lil-
jebjelke et al., 2005; van de Giessen et al., 2006; Gutierrez et al.,
2009). A possible explanation may be that all of the houses were
managed by the same company with similar production practices.
In addition, the Salmonella status of the previous flock and ineffi-
cient cleaning and disinfection between each flock has been con-
sidered to be an additional risk factor for higher prevalence (Rose
et al., 2000; Gradel et al., 2005).

C. jejuni was not frequently isolated from indoor or outdoor
environments and all litter and feed samples tested negative. Only
two houses had environmental samples that tested positive,
including a single grass and outside swab sample. There were
two C. jejuni-positive fan samples, which were collected from the
same house. The lack of detection of Campylobacter in litter and
feed in this study has been reported in previous studies that have
found little evidence indicating that these sample areas were a ma-
jor reservoir for Campylobacter (Nesbit et al., 2001; Newell et al.,
2011). Additionally, investigators found that Campylobacter preva-
lence in reused and dry litter, such as the litter used by the farms in
this study, was lower than in new litter (Berndtson et al., 1996;
Chinivasagam et al., 2010). This may be due in part to environmen-
tal conditions that were unfavorable for bacterial growth. It is pos-
sible that vertical transmission from the hatchery was the main
source of colonization for this system. However, this cannot be ver-
ified as the hatchery was not sampled in this study.

All Salmonella isolates were serotype S. Typhimurium. This was
unexpected as previous work has typically detected multiple sero-
types, even within the same house (Liljebjelke et al., 2005; Marin
et al., 2011). However, identification of this serotype has important
public health implications. According to the NARMS (2010) report,
the most frequently associated serotype among non typhoidal Sal-
monella in chicken retail meat was S. Typhimurium (87.8%)
(NARMS, 2012). In 2010, 13% of reported cases of human salmonel-
losis were caused by S. Typhimurium (CDC, 2011). Similar to Cam-
pylobacter, Salmonella was infrequently isolated from the indoor
and outdoor environments, with the exception of indoor litter sam-
ples. The relatively high prevalence of Salmonella in the litter has
been previously reported (Bailey et al., 2001; Liljebjelke et al.,
2005). Salmonella positive litter samples detected in our study
may have important public health implications. A recent study re-
ported a positive correlation between prevalence of Salmonella in
litter samples and Salmonella isolation from post-chill broiler car-
casses (Volkova et al., 2010).

The C. jejuni isolates in this study exhibited AR only to tetracy-
cline. Previous reports have documented increasing frequency of
AR to macrolides, quinolones, fluoroquinolones and tetracyclines
in Campylobacter originating from poultry (Chen et al., 2010; Wirz
et al., 2010; NARMS, 2012). However, the broiler houses in this
study were not given any of the above antimicrobials, potentially
explaining the lack of AR in isolates from the houses. S. Typhimu-
rium isolates exhibited resistance to a wide spectrum of antimicro-
bials including streptomycin and tetracycline (Table 1). These
findings were relatively higher than previous reports of AR in
chickens (Siemon et al., 2007; Alali et al., 2010; NARMS, 2012).
Twenty-six Salmonella isolates were MDR, which was in agreement
with a previous report by Siemon et al. (2007). In this study, salino-
mycin and bacitracin were used in the feed as coccidiostat and
antibiotic, respectively. Previous studies have reported a correla-
tion between use of feed supplemented with salinomycin and bac-
itracin with the development of MDR with higher frequency of
resistance to ceftiofur, gentamicin, streptomycin, and ampicillin
in Enterobacteriaceae (George et al., 1982; Diarra et al., 2007). AR
to the b-lactam class of antimicrobials, including third generation
cephalosporins such as ceftriaxone and ceftiofur, and MDR pat-
terns in commercial poultry and indoor environment isolates is
causing public health concern, since these antimicrobials are used
to treat human salmonellosis.
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Fig. 1. PFGE profiles of Campylobacter isolates from faecal and environment.⁄Antimicrobials (AB): Tetracycline (TET).
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The antimicrobial resistant Campylobacter and Salmonella iso-
lates were characterized at the molecular level to determine the
genes responsible for coding resistance to different antimicrobials.
All tetracycline resistant Campylobacter isolates carried the tet(O)
gene, which has been most frequently associated with tetracycline
resistance (Avrain et al., 2004; Gibreel et al., 2004). Tetracycline
resistant S. Typhimurium isolates harbored tet(A) and tet(B) genes
and have been shown to be the predominant alleles reported pre-
viously (Diarrassouba et al., 2007; Chuanchuen and Padungtod,
2009). All ampicillin resistant isolates were encoded by the blaTEM

gene, in accordance with previous reports that the penicillin class
of AR was mediated by the TEM b-lactamase enzymes (Peirano
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Fig. 1 (continued)
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et al., 2006; Hur et al., 2011). A previous report on E. coli and Sal-
monella isolated from broiler farms stated that resistance to b-lac-
tams, including cephalosporins, was commonly due to plasmid
mediated b-lactamase resistant gene blaCMY-2 similar to what we
found in our S. Typhimurium isolates (Diarrassouba et al., 2007).
The presence of ESBL producing blaTEM and plasmid-mediated
AmpC enzyme blaCMY-2 in the majority of indoor environmental
isolates highlights the role of the environment in the rapid dissem-
ination of resistance to cephalosporins, the front line of antimicro-
bials for human salmonellosis treatment. We detected class I
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integrons (1 kb) in 23% of the MDR isolates. Class I Integrons play
an important role in the dissemination of AR among different Sal-
monella strains in humans and animals (Gebreyes and Altier, 2002;
Peirano et al., 2006).

The Campylobacter and Salmonella isolates from broiler faecal
and environmental samples were typed by PFGE to examine geno-
typic relationships. The C. jejuni isolates from the five positive
houses revealed four major PFGE clusters with two additional un-
ique profiles. Three of these C. jejuni positive houses contained two
or more genotypes. This was in agreement with previous studies
that have shown between 40–77% of houses contain two or more
genotypes (Höök et al., 2005; Bull et al., 2006; Messens et al.,
2009). Interestingly, the isolate recovered from the outside swab
from House 3 had a different PFGE profile than the indoor litter
sample from that same house (Fig. 2). While there were only two
indoor and one outdoor environmental C. jejuni isolates for geno-
typing, the difference in PFGE profile types provided further evi-
dence that Campylobacter was not being transmitted between the
indoor and outdoor farm environments in this study, as has been
reported earlier (Nesbit et al., 2001).

The S. Typhimurium isolates revealed genetic diversity both
within and between the houses. This was highlighted by the detec-
tion of multiple genotypes in seven of the nine positive houses and
four of the nine clusters consisting of isolates from multiple
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houses. All houses were operated by the same large-scale com-
pany, so it is therefore not surprising that the same S. Typhimuri-
um PFGE strain was detected in different houses. Another
possible explanation is that vertical transmission from a common
hatchery resulted in the same PFGE strains being detected in differ-
ent houses. The genetic diversity among the same Salmonella sero-
type detected in this study has been previously reported in the
literature (Liebana et al., 2001; Sander et al., 2001). The high prev-
alence of S. Typhimurium in the litter and the common PFGE pro-
files with faecal samples indicates that the litter might be an
important reservoir for Salmonella in broiler houses.
5. Conclusions

The low prevalence of Campylobacter and Salmonella in the out-
door environment suggests that transmission of these pathogens
between the indoor and outdoor farm environments does not oc-
cur. However, the high prevalence of S. Typhimurium in the litter
and the common PFGE profiles with faecal samples indicates that
the litter might be an important reservoir for Salmonella in broiler
flocks. The prevalence of antimicrobial resistant Campylobacter and
Salmonella in broilers and their environment has important
implications from a food safety perspective since a decrease in
farm pathogen load might reduce carcass contamination at
slaughter.
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